This event has ended. Create your own event on Sched.
Join the 2020 ESIP Winter Meeting Highlights Webinar on Feb. 5th at 3 pm ET for a fast-paced overview of what took place at the meeting. More info here.
Back To Schedule
Thursday, January 9 • 10:15am - 11:45am
Do you have a labeling problem? Three tools for labeling data

Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

Feedback form is now closed.
The ESIP community and others in machine learning regularly lament the lack of labeled datasets, needed for certain classes of training algorithms. Generating accurate, useful labels is a hard problem, with no general automated solution in sight. Thus, labeling generally involves human effort, which is challenging because the volume of data needed for training can be very large.

Tools exist to help in labeling data. This session will demonstrate three labeling tools and associated processes:
  • Image Labeler, a fast, scalable cloud-based tool to facilitate the rapid development of Earth science event databases, to aid in automated ML-based image classification, Rahul Ramachandran
  • Labelimg, an open source graphical image annotation tool, https://github.com/tzutalin/labelImg, Ziheng Sun
  • Bokeh, a Python based plotting and annotation tool set for building arbitrary labeling workflows, https://bokeh.org/, Jim Bednar
Time permitting, the session will conclude with a short discussion of thoughts and tradeoffs about the tools.

This session is followed by a hands-on workshop for using Labelimg and Bokeh. Please see the session abstract for "Hands on Labeling Workshop" for information on preparing for that workshop if you are interested in participating.


View Recording: https://youtu.be/3ufBOoD3M1E

  • Machine learning based classification applications require high-quality labelled data sets for both model training and evaluation. There are many existing tools for labeling images (including earth science data), but labeling tasks are very labor and time intensive.
  • If the pre-built labeling tools don’t work for your problem, Anaconda provides a general-purpose labeler-building toolkit based on Bokeh for Python users; see https://examples.pyviz.org/ml_annotators/ml_annotators.html
  • There is opportunity in combining partly automated, partly human labeling, to automate the easy cases while leaving the final call to a person. Currently not much tool support or good practices, hard to integrate.The art of avoiding extra work!

avatar for Ziheng Sun

Ziheng Sun

Research Assistant Professor, George Mason University
My research interests are mainly on geospatial cyberinfrastructure and machine learning in atmospheric and agricultural sciences.
avatar for Anne Wilson

Anne Wilson

Senior Software Engineer, Laboratory for Atmospheric and Space Physics
avatar for Yuhan (Douglas) Rao

Yuhan (Douglas) Rao

Research Scientist, CISESS/NCICS/NCSU
I am currently a Research Scientist at North Carolina Institute for Climate Studies, affiliated with NOAA National Centers for Environmental Information. My current research at NCICS focuses on generating a blended near-surface air temperature dataset by integrating in situ measurements... Read More →
avatar for James Bednar

James Bednar

Director of Technical Consulting, Anaconda, Inc.
I work on HoloViz.org and PyViz.org, and am happy to chat about anything to do with visualizing data in Python.

Thursday January 9, 2020 10:15am - 11:45am EST
Glen Echo
  Glen Echo, Breakout